An object of size 3 cm is placed at a distance of 15 cm from a convex lens of focal length 10 cm. Calculate the distance and size of the image so formed. What will be the nature of the image?

Given,
Size of the object, h = + 3 cm
Object distance, u = - 15 cm
Focal length, f = + 10 cm   [f is +ve for a convex lens]
By lens formula,           
                          1v-1u = 1f 

                      1v = 1u+1f       = 1-15+110     = -2+330      = 130 

i.e., Image distance, v = + 30 cm. 

Magnification,  m = h'h = vu 

 Image size, h' = vhu = (+30) (+3)-15 = -6 cm.

As v is +ve and h' is negative, so a real and inverted image is formed at 30 cm behind the lens. 


200 Views

Define linear magnification produced by a lens. Deduce expression for the magnification for (i) convex lens and (ii) concave lens in terms of u and v.

Linear magnification: The linear magnification produced by a lens is defined as the ratio of the size of the image formed by the lens to the size of the object. It is denoted by m. Thus,
straight m space equals space fraction numerator Size space of space image over denominator Size space of space object end fraction space equals space fraction numerator straight h apostrophe over denominator straight h end fraction
Convex lens:

Linear magnification: The linear magnification produced by a lens is

Here,                             increment AOB space tilde space increment straight A apostrophe OB apostrophe
therefore                              fraction numerator straight A apostrophe straight B apostrophe over denominator AB end fraction space equals space fraction numerator OB apostrophe over denominator OB end fraction
According to new cartesian sign convention,
                                    straight A apostrophe straight B apostrophe equals space space minus straight h apostrophe comma space space AB space equals space plus space straight h comma space space space OB space equals space minus straight u comma space space OB apostrophe space equals space plus straight v
therefore                         fraction numerator negative straight h apostrophe over denominator plus straight h end fraction space equals space fraction numerator plus straight v over denominator negative straight u end fraction space space space or space space space fraction numerator straight h apostrophe over denominator straight h end fraction space equals space straight v over straight u

                      box enclose therefore space Magnification comma space space straight m space equals space fraction numerator straight h apostrophe over denominator straight h end fraction space equals space straight v over straight u end enclose
Concave lens:

Linear magnification: The linear magnification produced by a lens is      
Here,                           increment AOB space tilde space increment straight A apostrophe space OB apostrophe

Linear magnification: The linear magnification produced by a lens is therefore                     fraction numerator straight A apostrophe straight B apostrophe over denominator AB end fraction space equals space fraction numerator OB apostrophe over denominator OB end fraction
According to new cartesian sign convention,
                       straight A apostrophe straight B apostrophe space equals space plus straight h apostrophe comma space space space space space AB space equals space plus straight h comma space space OB space equals space minus straight u comma space space OB apostrophe space equals space minus straight v
therefore                           fraction numerator plus straight h apostrophe over denominator straight h end fraction space equals space fraction numerator negative straight v over denominator negative straight u end fraction space space space space space space or space space space space space space fraction numerator straight h apostrophe over denominator straight h end fraction space equals straight v over straight u

                    box enclose therefore space Magnification comma space straight m space equals space fraction numerator straight h apostrophe over denominator straight h end fraction space equals space straight v over straight u end enclose                                

                  

621 Views

A 5 cm tall object is placed perpendicular to the principal axis of a convex lens of focal length 20 cm. The distance of the object from the lens is 30 cm. Find the nature, position and size of the image. Also find its magnification.

We are given a convex lens.
Here,
Object size, h = + 5 cm
Focal length, f = +20 cm   [f is +ve for a convex lens]
Object distance, u = -30 cm
Image distance, v = ?
Image size = ? 


For a lens using the lens formula,

                     1v-1u =1f

                 1v = 1u+1f     = 1-30+120      = -2+360     = 160

i.e., Image distance,  v= + 60 cm 

Magnification,  m = h'h = vu

m = vu = +60 cm-30 cm = -2.  

Also, Image size,  
                           h' = vhu   = (+60) × (+5)(-30)  = -10 cm.

The positive sign of v shows that the image is formed at a distance of 60 cm to the right of optical centre of the lens. Negaticve sign of h' implies that the image formed is inverted. 

Therefore, the image is real and inverted. 

Thus, a real and inverted image which is 10 cm tall, is formed at a distance of 60 cm on the right side of the lens.
The image is two times enlarged in size than the object.

598 Views

Advertisement

A concave lens has focal length of 15 cm. At what, distance should the object from the lens be placed so that it forms an image at 10 cm from the lens? Also, find the magnification of the lens.


A concave lens always forms a virtual, erect image on the same side of the object. 

Given,
Image distance, v = -10 cm
Focal length,    f = - 15 cm            [f is -ve for a concave lens]
Object distance, u = ? 

Now, using lens formula, 

                        1v-1u =1f
we have,
                       1u =1v-1f        = 1-10 -1-15        = -3+230       = -130 

i.e.,                    u = -30 cm 

Thus the object should  be placed at a distance of 30 cm from the lens on the left side. 

Now, 

Magnification, m= vu = -10-30 = +13 = + 0.33 

Since, magnification is positive, we can say that the image is erect and virtual.
The size of the  image is reduced to one-third in size than the object after refraction.


889 Views

Advertisement

With the help of ray diagrams, explain the formation of images by a concave lens for the following positions of the object:
(i) Object at infinity
(ii) Object between infinity and optical centre O of the lens.


Image formation by a concave lens:
(i) Object at infinity: The rays from an object at infinity are parallel to each other. The rays diverge on refraction through the lens. A virtual, erect and extremely diminished image is formed at the focus F.

Image formation by a concave lens:(i) Object at infinity: The rays fr
Fig. Image formed by a concave lens when the object is at infinity

(ii) Object between infinity and optical centre O of the lens: A ray AN parallel to the principal axis, after refraction, appears to come from the focus F1. Another ray from  
lies between optical centre and infinity.
A passes undeviated through the optical centre O. The two rays appear to diverge from the point A'. Thus A' is the virtual image of A. Hence A'B' is the complete, virtual, erect and diminished image of the object AB. For all positions of the object the image is always virtual, erect and diminished and is formed between focus F1 and the optical centre O.


Image formation by a concave lens:(i) Object at infinity: The rays fr
Fig.  Image formed by a concave lens when the object


 

748 Views

Advertisement